5.1				
Name (print first and last)	_ Per	Date:	12/9 due 12/11	
5.1 Congruence	G	eometry R	egents 2013-2014 Ms.	Lomac
SLO: I can determine whether or not two triangles can be proven congrue	nt by SA	S≅.		

(1) \Box In the diagram, the triangles are labeled \triangle ABC and \triangle A'B'C'. This means that \triangle A'B'C' is an ______ of \triangle ABC under a transformation or composition of transformations. Today you will check to see that the triangles are congruent by verifying that a sequence (composition) of rigid transformations will map \triangle ABC to \triangle A'B'C' by working backwards. To do that, we will have to transform point A' so that it coincides with ______, B' so that it coincides with _______.

Start by constructing a translation of $\triangle A'B'C'$, so that A' coincides (is in the same location) with A. Label your triangle A"B"C". Hmmmm..... What vector should we use? ______ (well, we are sliding A' to A, so . . .)

have transformed C", you can use the angle on the right to help you rotate B", because of course B" must also rotate.

С

5.1					
A''' is just la	abeled A in the diagram belo	w because the 2 points		. The other 2 poir	nts that coincide
are and	d So, we just need	to get B''' to coincide with _	It looks lik	ke B''' will map to _	if we
	△AB'''C across	, BUT, can we be SURE	E that B and B''' v	vill coincide?!?	
B and B''' are o	n rays that coincide because	≥∠≅∠	_ and		preserves
		B and B''' must	after	reflection because	e (1) they are on
rays that	, (2) <i>AB</i> ≅	so B and B''' are equid	istant from point	A, and (3)	
preserves	, so B an	d B''' are the same distance	e from vertex A.	Therefore, B and E	3"' MUST coincide.
		A			
	B	t op			
		$\setminus \dagger$	> B'''		
		\overline{C}			
So, what do	es this mean for us? Well, if	we need to show that 2 tria	angles are congru	uent, do we have t	o show that all
three pairs of c	orresponding sides AND all	three pairs of corresponding	g angles are con	gruent?	In fact, this
process shows	us that all we need is	_pairs ofa	nd pair of _		The pair of
	must be between the p	airs of congruent	То	o abbreviate this n	nethod of proving
triangles are co	ongruent, we write SAS ≅ wh	ich is short for saying S	A	S_	
≅					
(2) Given: 2	\angle LMN \cong \angle LNO, $\overline{MN} \cong \overline{ON}$	1		L	
Do △LN	MN and $\triangle LOM$ meet the SA	.S≃ criteria? Provi	de evidence.		
s	because				
Δ	because			N	
۸ S	because				
CThe a	angle is/is not (circle one) be	tween the sides		17	
110 (
				M	
(3) Civen				111	
	$2101 \equiv 200, 110 \equiv 31$	C-, eviteria () Drevid	la avidance		
	אוט בעווש מווע בעווופנ נחפ אז מווע מווע מווט מווט מווט מווט מוו		le evidence.	$G \sim$	<u> </u> η <i>Η</i>
S	because				
A					
ა	Decause			Jb	+

The angle is/is not (circle one) between the sides. (If not, choose a different A)

5.1

(4) Given:	: $\overline{AB} \parallel \overline{CD}$, $\overline{AB} \cong \overline{CD}$ (Hint: Parallel lines give us pairs of congruent angles. Are the	here any here?)
Do	o $△$ ABD and $△$ CDB meet the SAS \cong criteria? Provide evid	ence.
S	because	AB
Α	because	/ _/
S	because	
The	e angle is/is not (circle one) between the sides.	DC
(5) 🗌 Given:	: $m \angle R = 25^{\circ}$, $RT = 7^{"}$, $SU = 5^{"}$, $ST = 5^{"}$ (Hint: Isosceles Triangle	Theorem from 4.5 notes. Highlighters could help here.)
Do	o \triangle RSU and \triangle RST meet the SAS \cong criteria? Provide evide	ence.
S	because	7" 5"
Α	because	_ / `
S	because	R $Z5^{\circ}$ T T
(6) 🗌 Given: Do	: \overline{KM} and \overline{JN} bisect each other. (Hint: What do we get when a segment is bis o $\triangle JKL$ and $\triangle NML$ meet the SAS \cong criteria? Provide evide	sected?) ence.
	because	— к
	because	- / /
	because	- / ² ^M
The_		— jh
(7) Given: \overline{A}	\overline{AE} bisects $\angle BCD$, $\overline{BC} \cong \overline{DC}$. (Hint: What do we get when an angle is bisected	ed? WHICH angle is bisected?)
Do $ riangle$	CAB and $ riangle$ CAD meet the SAS \cong criteria? Provide evidence	e. <u>B</u>
	because	_
	because	-
	because	$- \overset{C}{\swarrow} \overset{E}{\checkmark} \overset{E}{\checkmark}$
The _		_ \ /

5.1

Do \triangle SVR and \triangle UVT meet the SAS \cong criteria?	Provide evidence.
	R
Given: $\overline{JM} \cong \overline{KL}$, $\overline{JM} \perp \overline{ML}$, $\overline{KL} \perp \overline{ML}$ (Hint: What does	that upside-down T mean? Highlighters, save me from
Do \triangle JML and \triangle KML meet the SAS \cong criteria?	Provide evidence.
Given: $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$ (Hint: What does that upside-dow	//////////////////////////////////////
Given: $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$ (Hint: What does that upside-dow Do \triangle BED and \triangle CFD meet the SAS \cong criteria?	// T mean? Highlighters, where would I be without highl
Given: $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$ (Hint: What does that upside-dow Do \triangle BED and \triangle CFD meet the SAS \cong criteria?	/n T mean? Highlighters, where would I be without highl
☐ Given: $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$ (Hint: What does that upside-dov Do △BED and △CFD meet the SAS≅ criteria?	on T mean? Highlighters, where would I be without highlighters.
☐ Given: $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$ (Hint: What does that upside-dov Do △BED and △CFD meet the SAS≅ criteria?	un T mean? Highlighters, where would I be without highlighters.
☐ Given: $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$ (Hint: What does that upside-dov Do △BED and △CFD meet the SAS≅ criteria?	n T mean? Highlighters, where would I be without highlighters.
□ Given: $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$ (Hint: What does that upside-dov Do △BED and △CFD meet the SAS≅ criteria?	n T mean? Highlighters, where would I be without highlighters.
□ Given: $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$ (Hint: What does that upside-dov Do △BED and △CFD meet the SAS≅ criteria?	
□ Given: $\overline{BF} \perp \overline{AC}$, $\overline{CE} \perp \overline{AB}$ (Hint: What does that upside-dow Do \triangle BED and \triangle CFD meet the SAS≅ criteria?	In T mean? Highlighters, where would I be without highlighters. Provide evidence.
□ Given: $\overrightarrow{BF} \perp \overrightarrow{AC}$, $\overrightarrow{CE} \perp \overrightarrow{AB}$ (Hint: What does that upside-dov Do \triangle BED and \triangle CFD meet the SAS≅ criteria?	n T mean? Highlighters, where would I be without highlighters.

5.1 Exit Ticket	Name	Per	🔲 🧐 l got this! 🌾
Complete the sta	tement. You may use diagrams to supp $\sqrt{1} \approx \sqrt{2}$ $\overline{BC} \approx \overline{DC}$	ort your statement.	 □ ([®]) I can with a bit of help ○ I will, given lots of help ○ I can't ○ I can't ○ U way to bother to ○ I way to bother to ○
			🗋 🕙 I vefuse to 🤹
	and ∠ADC meet the SAS≅ criteria?		A 12 C D
5.1 Exit Ticket	Name	Per	🔲 😁 l got this! 🌾
Complete the sta	tement. You may use diagrams to supp	ort your statement.	□ ♥ I can with a bit of help M □ ♥ I will, given lots of help M
Given: Given:	$\angle 1 \cong \angle 2, \ \overline{BC} \cong \overline{DC}$		🗌 🏽 l can't 🗼, 🔲 🕾 l won't bother to 🦨
Do riangle ABC	and $ riangle ADC$ meet the SAS \cong criteria?	Provide evidence.	🔲 🕙 l refuse to 🤹 🦷
			B B D
5.1 Exit Ticket	Name	Per	🔲 👻 l got this! 🕅
Complete the sta	tement. You may use diagrams to supp	ort your statement.	□ ⁽¹⁾ I can with a bit of help 1/2 □ ⁽¹⁾ I will, given lots of help 1/2
Given: Given:	$\angle 1 \cong \angle 2, \ \overline{BC} \cong \overline{DC}$		🗌 🎯 I can t 🚓
Do riangle ABC	and $ riangle ADC$ meet the SAS \cong criteria?	Provide evidence.	📋 🎯 l retuse to 🛒
			A 12 C D
5.1 Exit Ticket	Name	Per	🔲 😇 l got this! 🕅
Complete the sta	tement. You may use diagrams to supp	ort your statement.	 □ ([®]) I can with a bit of help
Given: Given:	$\angle 1 \cong \angle 2, \ \overline{BC} \cong \overline{DC}$		🗌 🛞 l can't 👗, 🗆 🕮 l won't bother to 🐧
Do ∆ABC	and $ riangle ADC$ meet the SAS \cong criteria?	Provide evidence.	🔲 🕙 l refuse to 🤹 🦷
			A 1 2 C